BFS

BFS 全称是 Breadth First Search,中文名是宽度优先搜索,也叫广度优先搜索。

是图上最基础、最重要的搜索算法之一。

所谓宽度优先。就是每次都尝试访问同一层的节点。 如果同一层都访问完了,再访问下一层。

这样做的结果是,BFS 算法找到的路径是从起点开始的 最短 合法路径。换言之,这条路径所包含的边数最小。

在 BFS 结束时,每个节点都是通过从起点到该点的最短路径访问的。

算法过程可以看做是图上火苗传播的过程:最开始只有起点着火了,在每一时刻,有火的节点都向它相邻的所有节点传播火苗。

BFS

图中点的层次遍历

queue<int> q;
st[1] = true; // 表示1号点已经被遍历过
q.push(1);

while (q.size())
{
    int t = q.front();
    q.pop();

    for (int i = h[t]; i != -1; i = ne[i])
    {
        int j = e[i];
        if (!st[j])
        {
            st[j] = true; // 表示点j已经被遍历过
            q.push(j);
        }
    }
}

844. 走迷宫

代码

#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>

using namespace std;

typedef pair<int, int> PII;

const int N = 110;

int n, m;
int g[N][N], d[N][N];

int bfs()
{
    queue<PII> q;

    memset(d, -1, sizeof d);
    d[0][0] = 0;
    q.push({0, 0});

    int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};

    while (q.size())
    {
        auto t = q.front();
        q.pop();

        for (int i = 0; i < 4; i ++ )
        {
            int x = t.first + dx[i], y = t.second + dy[i];

            if (x >= 0 && x < n && y >= 0 && y < m && g[x][y] == 0 && d[x][y] == -1)
            {
                d[x][y] = d[t.first][t.second] + 1;
                q.push({x, y});
            }
        }
    }

    return d[n - 1][m - 1];
}

int main()
{
    cin >> n >> m;
    for (int i = 0; i < n; i ++ )
        for (int j = 0; j < m; j ++ )
            cin >> g[i][j];

    cout << bfs() << endl;

    return 0;
}

846. 树的重心

题目:

给定一颗树,树中包含 n 个结点(编号 1∼n)和 n−1 条无向边。

请你找到树的重心,并输出将重心删除后,剩余各个连通块中点数的最大值。

重心定义:重心是指树中的一个结点,如果将这个点删除后,剩余各个连通块中点数的最大值最小,那么这个节点被称为树的重心。

思路:

dfs(i)指的是以i为根节点的子树的节点数之和

代码:

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

const int N = 100010, M = N * 2;

int n;
int h[N], e[M], ne[M], idx;
int ans = N;
bool st[N];

void add(int a, int b)
{
    e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ;
}

int dfs(int u)
{
    st[u] = true;

    int size = 0, sum = 0;
    for (int i = h[u]; i != -1; i = ne[i])
    {
        int j = e[i];
        if (st[j]) continue;

        int s = dfs(j);//S是以j为根结点的子树的节点之和
        size = max(size, s);
        sum += s;
    }//循环结束后,size是u点的所有子树的最大节点数,sum是所有子树节点之和

    size = max(size, n - sum - 1);
    ans = min(ans, size);

    return sum + 1;
}

int main()
{
    scanf("%d", &n);

    memset(h, -1, sizeof h);

    for (int i = 0; i < n - 1; i ++ )
    {
        int a, b;
        scanf("%d%d", &a, &b);
        add(a, b), add(b, a);
    }

    dfs(1);

    printf("%d\n", ans);

    return 0;
}

847. 图中点的层次

给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环。

所有边的长度都是 1,点的编号为 1∼n。

请你求出 1 号点到 n 号点的最短距离,如果从 1 号点无法走到 n 号点,输出 −1。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>

using namespace std;

const int N = 100010;
    
int n, m;
int h[N], e[N], ne[N], idx;
int d[N];

void add(int a, int b)
{
    e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ;
}
//q,d,里面存储的都是节点的e,只有拉链里面存储的是节点的idx
int bfs()
{
    memset(d, -1, sizeof d);

    queue<int> q;
    d[1] = 0;
    q.push(1);

    while (q.size())
    {
        int t = q.front();
        q.pop();

        for (int i = h[t]; i != -1; i = ne[i])
        {
            int j = e[i];
            if (d[j] == -1)
            {
                d[j] = d[t] + 1;
                q.push(j);
            }
        }
    }

    return d[n];
}

int main()
{
    scanf("%d%d", &n, &m);
    memset(h, -1, sizeof h);

    for (int i = 0; i < m; i ++ )
    {
        int a, b;
        scanf("%d%d", &a, &b);
        add(a, b);
    }

    cout << bfs() << endl;

    return 0;
}

Flood Fill

1097. 池塘计数

题目:

八相连,问有几个连通块

思路:

计算调用了几次BFS

代码:

#include <cstring>
#include <iostream>
#include <algorithm>

#define x first
#define y second

using namespace std;

typedef pair<int, int> PII;

const int N = 1010, M = N * N;

int n, m;
char g[N][N];
PII q[M];
bool st[N][N];

void bfs(int sx, int sy)
{
    int hh = 0, tt = 0;
    q[0] = {sx, sy};
    st[sx][sy] = true;

    while (hh <= tt)
    {
        PII t = q[hh ++ ];

        for (int i = t.x - 1; i <= t.x + 1; i ++ )
            for (int j = t.y - 1; j <= t.y + 1; j ++ )
            {
                if (i == t.x && j == t.y) continue;
                if (i < 0 || i >= n || j < 0 || j >= m) continue;
                if (g[i][j] == '.' || st[i][j]) continue;

                q[ ++ tt] = {i, j};
                st[i][j] = true;
            }
    }
}

int main()
{
    scanf("%d%d", &n, &m);
    for (int i = 0; i < n; i ++ ) scanf("%s", g[i]);

    int cnt = 0;
    for (int i = 0; i < n; i ++ )
        for (int j = 0; j < m; j ++ )
            if (g[i][j] == 'W' && !st[i][j])
            {
                bfs(i, j);
                cnt ++ ;
            }

    printf("%d\n", cnt);

    return 0;
}

1098. 城堡问题

题目:

问有几个屋,最大的屋的面积是多少

思路:

代码:

#include <cstring>
#include <iostream>
#include <algorithm>

#define x first
#define y second

using namespace std;

typedef pair<int, int> PII;

const int N = 55, M = N * N;

int n, m;
int g[N][N];
PII q[M];
bool st[N][N];

int bfs(int sx, int sy)
{
    int dx[4] = {0, -1, 0, 1}, dy[4] = {-1, 0, 1, 0};

    int hh = 0, tt = 0;
    int area = 0;

    q[0] = {sx, sy};
    st[sx][sy] = true;

    while (hh <= tt)
    {
        PII t = q[hh ++ ];
        area ++ ;

        for (int i = 0; i < 4; i ++ )
        {
            int a = t.x + dx[i], b = t.y + dy[i];
            if (a < 0 || a >= n || b < 0 || b >= m) continue;
            if (st[a][b]) continue;
            if (g[t.x][t.y] >> i & 1) continue;

            q[ ++ tt] = {a, b};
            st[a][b] = true;
        }
    }

    return area;
}

int main()
{
    cin >> n >> m;
    for (int i = 0; i < n; i ++ )
        for (int j = 0; j < m; j ++ )
            cin >> g[i][j];

    int cnt = 0, area = 0;
    for (int i = 0; i < n; i ++ )
        for (int j = 0; j < m; j ++ )
            if (!st[i][j])
            {
                area = max(area, bfs(i, j));
                cnt ++ ;
            }

    cout << cnt << endl;
    cout << area << endl;

    return 0;
}

1106. 山峰和山谷

#include <cstring>
#include <iostream>
#include <algorithm>

#define x first
#define y second

using namespace std;

typedef pair<int, int> PII;

const int N = 1010, M = N * N;

int n;
int h[N][N];
PII q[M];
bool st[N][N];

void bfs(int sx, int sy, bool& has_higher, bool& has_lower)
{
    int hh = 0, tt = 0;
    q[0] = {sx, sy};
    st[sx][sy] = true;

    while (hh <= tt)
    {
        PII t = q[hh ++ ];

        for (int i = t.x - 1; i <= t.x + 1; i ++ )
            for (int j = t.y - 1; j <= t.y + 1; j ++ )
            {
                if (i == t.x && j == t.y) continue;
                if (i < 0 || i >= n || j < 0 || j >= n) continue;
                if (h[i][j] != h[t.x][t.y]) // 山脉的边界
                {
                    if (h[i][j] > h[t.x][t.y]) has_higher  = true;
                    else has_lower = true;
                }
                else if (!st[i][j])
                {
                    q[ ++ tt] = {i, j};
                    st[i][j] = true;
                }
            }
    }
}

int main()
{
    scanf("%d", &n);

    for (int i = 0; i < n; i ++ )
        for (int j = 0; j < n; j ++ )
            scanf("%d", &h[i][j]);

    int peak = 0, valley = 0;
    for (int i = 0; i < n; i ++ )
        for (int j = 0; j < n; j ++ )
            if (!st[i][j])
            {
                bool has_higher = false, has_lower = false;
                bfs(i, j, has_higher, has_lower);
                if (!has_higher) peak ++ ;
                if (!has_lower) valley ++ ;
            }

    printf("%d %d\n", peak, valley);

    return 0;
}

最短路径问题

1076. 迷宫问题

题目:

迷宫问题,求最短路径的长度并输出

思路:

代码:

#include <cstring>
#include <iostream>
#include <algorithm>

#define x first
#define y second

using namespace std;

typedef pair<int, int> PII;

const int N = 1010, M = N * N;

int n;
int g[N][N];
PII q[M];
PII pre[N][N];

void bfs(int sx, int sy)
{
    int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};

    int hh = 0, tt = 0;
    q[0] = {sx, sy};

    memset(pre, -1, sizeof pre);
    pre[sx][sy] = {0, 0};
    while (hh <= tt)
    {
        PII t = q[hh ++ ];

        for (int i = 0; i < 4; i ++ )
        {
            int a = t.x + dx[i], b = t.y + dy[i];
            if (a < 0 || a >= n || b < 0 || b >= n) continue;
            if (g[a][b]) continue;
            if (pre[a][b].x != -1) continue;

            q[ ++ tt] = {a, b};
            pre[a][b] = t;
        }
    }
}

int main()
{
    scanf("%d", &n);

    for (int i = 0; i < n; i ++ )
        for (int j = 0; j < n; j ++ )
            scanf("%d", &g[i][j]);

    bfs(n - 1, n - 1);

    PII end(0, 0);

    while (true)
    {
        printf("%d %d\n", end.x, end.y);
        if (end.x == n - 1 && end.y == n - 1) break;
        end = pre[end.x][end.y];
    }

    return 0;
}

188. 武士风度的牛

题目:

马走日,问从起点走到终点最少走几步

思路:

走呗

代码:

#include <cstring>
#include <iostream>
#include <algorithm>

#define x first
#define y second

using namespace std;

typedef pair<int, int> PII;

const int N = 155, M = N * N;

int n, m;
char g[N][N];
PII q[M];
int dist[N][N];

int bfs()
{
    int dx[] = {-2, -1, 1, 2, 2, 1, -1, -2};
    int dy[] = {1, 2, 2, 1, -1, -2, -2, -1};

    int sx, sy;
    for (int i = 0; i < n; i ++ )
        for (int j = 0; j < m; j ++ )
            if (g[i][j] == 'K')
                sx = i, sy = j;

    int hh = 0, tt = 0;
    q[0] = {sx, sy};

    memset(dist, -1, sizeof dist);
    dist[sx][sy] = 0;

    while (hh <= tt)
    {
        auto t = q[hh ++ ];

        for (int i = 0; i < 8; i ++ )
        {
            int a = t.x + dx[i], b = t.y + dy[i];
            if (a < 0 || a >= n || b < 0 || b >= m) continue;
            if (g[a][b] == '*') continue;
            if (dist[a][b] != -1) continue;
            if (g[a][b] == 'H') return dist[t.x][t.y] + 1;

            dist[a][b] = dist[t.x][t.y] + 1;
            q[ ++ tt] = {a, b};
        }
    }

    return -1;
}

int main()
{
    cin >> m >> n;

    for (int i = 0; i < n; i ++ ) cin >> g[i];

    cout << bfs() << endl;

    return 0;
}

1100. 抓住那头牛

题目:

农夫有两种走的方式:位置+1或-1,位置*2,问抓住牛最少需要走几步

思路:

代码:

#include <bits/stdc++.h>

using namespace std;

const int N = 100010;

int n, k;
int q[N];
int dist[N];

int bfs()
{
    memset(dist, -1, sizeof dist);
    int hh = 0, tt = 0;
    q[0] = n;
    dist[n] = 0;
    while(hh <= tt)
    {
        int t = q[hh ++];
        if(t == k)return dist[k];
        if(t + 1 < N && dist[t + 1] == -1)dist[t + 1] = dist[t] + 1, q[++ tt] = t + 1;
        if(t - 1 >= 0 && dist[t - 1] == -1)dist[t - 1] = dist[t] + 1, q[++ tt] = t - 1;
        if(2 * t < N && dist[2 * t] == -1)dist[2 * t] = dist[t] + 1, q[++ tt] = t * 2;
    }
    return -1;
}


int main()
{
    cin >> n >> k;
    cout << bfs();
    return 0;
}

多源BFS

173. 矩阵距离

题目:

输出一个 N 行 M 列的整数矩阵 B,其中:

$B[i][j]=min_{1≤x≤N,1≤y≤M,A[x][y]=1}dist(A[i][j],A[x][y])$

思路:

代码:

#include <cstring>
#include <iostream>
#include <algorithm>

#define x first
#define y second

using namespace std;

typedef pair<int, int> PII;

const int N = 1010, M = N * N;

int n, m;
char g[N][N];
PII q[M];
int dist[N][N];

void bfs()
{
    int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};

    memset(dist, -1, sizeof dist);

    int hh = 0, tt = -1;
    for (int i = 1; i <= n; i ++ )
        for (int j = 1; j <= m; j ++ )
            if (g[i][j] == '1')
            {
                dist[i][j] = 0;
                q[ ++ tt] = {i, j};
            }

    while (hh <= tt)
    {
        auto t = q[hh ++ ];

        for (int i = 0; i < 4; i ++ )
        {
            int a = t.x + dx[i], b = t.y + dy[i];
            if (a < 1 || a > n || b < 1 || b > m) continue;
            if (dist[a][b] != -1) continue;

            dist[a][b] = dist[t.x][t.y] + 1;
            q[ ++ tt] = {a, b};
        }
    }
}

int main()
{
    scanf("%d%d", &n, &m);
    for (int i = 1; i <= n; i ++ ) scanf("%s", g[i] + 1);

    bfs();

    for (int i = 1; i <= n; i ++ )
    {
        for (int j = 1; j <= m; j ++ ) printf("%d ", dist[i][j]);
        puts("");
    }

    return 0;
}

转载请注明来源,欢迎对文章中的引用来源进行考证,欢迎指出任何有错误或不够清晰的表达。可以在下面评论区评论,也可以邮件至 1149440709@qq.com

×

喜欢就点赞,疼爱就打赏