BFS 全称是 Breadth First Search,中文名是宽度优先搜索,也叫广度优先搜索。
是图上最基础、最重要的搜索算法之一。
所谓宽度优先。就是每次都尝试访问同一层的节点。 如果同一层都访问完了,再访问下一层。
这样做的结果是,BFS 算法找到的路径是从起点开始的 最短 合法路径。换言之,这条路径所包含的边数最小。
在 BFS 结束时,每个节点都是通过从起点到该点的最短路径访问的。
算法过程可以看做是图上火苗传播的过程:最开始只有起点着火了,在每一时刻,有火的节点都向它相邻的所有节点传播火苗。
BFS
图中点的层次遍历
queue<int> q;
st[1] = true; // 表示1号点已经被遍历过
q.push(1);
while (q.size())
{
int t = q.front();
q.pop();
for (int i = h[t]; i != -1; i = ne[i])
{
int j = e[i];
if (!st[j])
{
st[j] = true; // 表示点j已经被遍历过
q.push(j);
}
}
}
844. 走迷宫
代码
#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
typedef pair<int, int> PII;
const int N = 110;
int n, m;
int g[N][N], d[N][N];
int bfs()
{
queue<PII> q;
memset(d, -1, sizeof d);
d[0][0] = 0;
q.push({0, 0});
int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};
while (q.size())
{
auto t = q.front();
q.pop();
for (int i = 0; i < 4; i ++ )
{
int x = t.first + dx[i], y = t.second + dy[i];
if (x >= 0 && x < n && y >= 0 && y < m && g[x][y] == 0 && d[x][y] == -1)
{
d[x][y] = d[t.first][t.second] + 1;
q.push({x, y});
}
}
}
return d[n - 1][m - 1];
}
int main()
{
cin >> n >> m;
for (int i = 0; i < n; i ++ )
for (int j = 0; j < m; j ++ )
cin >> g[i][j];
cout << bfs() << endl;
return 0;
}
846. 树的重心
题目:
给定一颗树,树中包含 n 个结点(编号 1∼n)和 n−1 条无向边。
请你找到树的重心,并输出将重心删除后,剩余各个连通块中点数的最大值。
重心定义:重心是指树中的一个结点,如果将这个点删除后,剩余各个连通块中点数的最大值最小,那么这个节点被称为树的重心。
思路:
dfs(i)指的是以i为根节点的子树的节点数之和
代码:
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 100010, M = N * 2;
int n;
int h[N], e[M], ne[M], idx;
int ans = N;
bool st[N];
void add(int a, int b)
{
e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ;
}
int dfs(int u)
{
st[u] = true;
int size = 0, sum = 0;
for (int i = h[u]; i != -1; i = ne[i])
{
int j = e[i];
if (st[j]) continue;
int s = dfs(j);//S是以j为根结点的子树的节点之和
size = max(size, s);
sum += s;
}//循环结束后,size是u点的所有子树的最大节点数,sum是所有子树节点之和
size = max(size, n - sum - 1);
ans = min(ans, size);
return sum + 1;
}
int main()
{
scanf("%d", &n);
memset(h, -1, sizeof h);
for (int i = 0; i < n - 1; i ++ )
{
int a, b;
scanf("%d%d", &a, &b);
add(a, b), add(b, a);
}
dfs(1);
printf("%d\n", ans);
return 0;
}
847. 图中点的层次
给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环。
所有边的长度都是 1,点的编号为 1∼n。
请你求出 1 号点到 n 号点的最短距离,如果从 1 号点无法走到 n 号点,输出 −1。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
const int N = 100010;
int n, m;
int h[N], e[N], ne[N], idx;
int d[N];
void add(int a, int b)
{
e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ;
}
//q,d,里面存储的都是节点的e,只有拉链里面存储的是节点的idx
int bfs()
{
memset(d, -1, sizeof d);
queue<int> q;
d[1] = 0;
q.push(1);
while (q.size())
{
int t = q.front();
q.pop();
for (int i = h[t]; i != -1; i = ne[i])
{
int j = e[i];
if (d[j] == -1)
{
d[j] = d[t] + 1;
q.push(j);
}
}
}
return d[n];
}
int main()
{
scanf("%d%d", &n, &m);
memset(h, -1, sizeof h);
for (int i = 0; i < m; i ++ )
{
int a, b;
scanf("%d%d", &a, &b);
add(a, b);
}
cout << bfs() << endl;
return 0;
}
Flood Fill
1097. 池塘计数
题目:
八相连,问有几个连通块
思路:
计算调用了几次BFS
代码:
#include <cstring>
#include <iostream>
#include <algorithm>
#define x first
#define y second
using namespace std;
typedef pair<int, int> PII;
const int N = 1010, M = N * N;
int n, m;
char g[N][N];
PII q[M];
bool st[N][N];
void bfs(int sx, int sy)
{
int hh = 0, tt = 0;
q[0] = {sx, sy};
st[sx][sy] = true;
while (hh <= tt)
{
PII t = q[hh ++ ];
for (int i = t.x - 1; i <= t.x + 1; i ++ )
for (int j = t.y - 1; j <= t.y + 1; j ++ )
{
if (i == t.x && j == t.y) continue;
if (i < 0 || i >= n || j < 0 || j >= m) continue;
if (g[i][j] == '.' || st[i][j]) continue;
q[ ++ tt] = {i, j};
st[i][j] = true;
}
}
}
int main()
{
scanf("%d%d", &n, &m);
for (int i = 0; i < n; i ++ ) scanf("%s", g[i]);
int cnt = 0;
for (int i = 0; i < n; i ++ )
for (int j = 0; j < m; j ++ )
if (g[i][j] == 'W' && !st[i][j])
{
bfs(i, j);
cnt ++ ;
}
printf("%d\n", cnt);
return 0;
}
1098. 城堡问题
题目:
问有几个屋,最大的屋的面积是多少
思路:
代码:
#include <cstring>
#include <iostream>
#include <algorithm>
#define x first
#define y second
using namespace std;
typedef pair<int, int> PII;
const int N = 55, M = N * N;
int n, m;
int g[N][N];
PII q[M];
bool st[N][N];
int bfs(int sx, int sy)
{
int dx[4] = {0, -1, 0, 1}, dy[4] = {-1, 0, 1, 0};
int hh = 0, tt = 0;
int area = 0;
q[0] = {sx, sy};
st[sx][sy] = true;
while (hh <= tt)
{
PII t = q[hh ++ ];
area ++ ;
for (int i = 0; i < 4; i ++ )
{
int a = t.x + dx[i], b = t.y + dy[i];
if (a < 0 || a >= n || b < 0 || b >= m) continue;
if (st[a][b]) continue;
if (g[t.x][t.y] >> i & 1) continue;
q[ ++ tt] = {a, b};
st[a][b] = true;
}
}
return area;
}
int main()
{
cin >> n >> m;
for (int i = 0; i < n; i ++ )
for (int j = 0; j < m; j ++ )
cin >> g[i][j];
int cnt = 0, area = 0;
for (int i = 0; i < n; i ++ )
for (int j = 0; j < m; j ++ )
if (!st[i][j])
{
area = max(area, bfs(i, j));
cnt ++ ;
}
cout << cnt << endl;
cout << area << endl;
return 0;
}
1106. 山峰和山谷
#include <cstring>
#include <iostream>
#include <algorithm>
#define x first
#define y second
using namespace std;
typedef pair<int, int> PII;
const int N = 1010, M = N * N;
int n;
int h[N][N];
PII q[M];
bool st[N][N];
void bfs(int sx, int sy, bool& has_higher, bool& has_lower)
{
int hh = 0, tt = 0;
q[0] = {sx, sy};
st[sx][sy] = true;
while (hh <= tt)
{
PII t = q[hh ++ ];
for (int i = t.x - 1; i <= t.x + 1; i ++ )
for (int j = t.y - 1; j <= t.y + 1; j ++ )
{
if (i == t.x && j == t.y) continue;
if (i < 0 || i >= n || j < 0 || j >= n) continue;
if (h[i][j] != h[t.x][t.y]) // 山脉的边界
{
if (h[i][j] > h[t.x][t.y]) has_higher = true;
else has_lower = true;
}
else if (!st[i][j])
{
q[ ++ tt] = {i, j};
st[i][j] = true;
}
}
}
}
int main()
{
scanf("%d", &n);
for (int i = 0; i < n; i ++ )
for (int j = 0; j < n; j ++ )
scanf("%d", &h[i][j]);
int peak = 0, valley = 0;
for (int i = 0; i < n; i ++ )
for (int j = 0; j < n; j ++ )
if (!st[i][j])
{
bool has_higher = false, has_lower = false;
bfs(i, j, has_higher, has_lower);
if (!has_higher) peak ++ ;
if (!has_lower) valley ++ ;
}
printf("%d %d\n", peak, valley);
return 0;
}
最短路径问题
1076. 迷宫问题
题目:
迷宫问题,求最短路径的长度并输出
思路:
代码:
#include <cstring>
#include <iostream>
#include <algorithm>
#define x first
#define y second
using namespace std;
typedef pair<int, int> PII;
const int N = 1010, M = N * N;
int n;
int g[N][N];
PII q[M];
PII pre[N][N];
void bfs(int sx, int sy)
{
int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};
int hh = 0, tt = 0;
q[0] = {sx, sy};
memset(pre, -1, sizeof pre);
pre[sx][sy] = {0, 0};
while (hh <= tt)
{
PII t = q[hh ++ ];
for (int i = 0; i < 4; i ++ )
{
int a = t.x + dx[i], b = t.y + dy[i];
if (a < 0 || a >= n || b < 0 || b >= n) continue;
if (g[a][b]) continue;
if (pre[a][b].x != -1) continue;
q[ ++ tt] = {a, b};
pre[a][b] = t;
}
}
}
int main()
{
scanf("%d", &n);
for (int i = 0; i < n; i ++ )
for (int j = 0; j < n; j ++ )
scanf("%d", &g[i][j]);
bfs(n - 1, n - 1);
PII end(0, 0);
while (true)
{
printf("%d %d\n", end.x, end.y);
if (end.x == n - 1 && end.y == n - 1) break;
end = pre[end.x][end.y];
}
return 0;
}
188. 武士风度的牛
题目:
马走日,问从起点走到终点最少走几步
思路:
走呗
代码:
#include <cstring>
#include <iostream>
#include <algorithm>
#define x first
#define y second
using namespace std;
typedef pair<int, int> PII;
const int N = 155, M = N * N;
int n, m;
char g[N][N];
PII q[M];
int dist[N][N];
int bfs()
{
int dx[] = {-2, -1, 1, 2, 2, 1, -1, -2};
int dy[] = {1, 2, 2, 1, -1, -2, -2, -1};
int sx, sy;
for (int i = 0; i < n; i ++ )
for (int j = 0; j < m; j ++ )
if (g[i][j] == 'K')
sx = i, sy = j;
int hh = 0, tt = 0;
q[0] = {sx, sy};
memset(dist, -1, sizeof dist);
dist[sx][sy] = 0;
while (hh <= tt)
{
auto t = q[hh ++ ];
for (int i = 0; i < 8; i ++ )
{
int a = t.x + dx[i], b = t.y + dy[i];
if (a < 0 || a >= n || b < 0 || b >= m) continue;
if (g[a][b] == '*') continue;
if (dist[a][b] != -1) continue;
if (g[a][b] == 'H') return dist[t.x][t.y] + 1;
dist[a][b] = dist[t.x][t.y] + 1;
q[ ++ tt] = {a, b};
}
}
return -1;
}
int main()
{
cin >> m >> n;
for (int i = 0; i < n; i ++ ) cin >> g[i];
cout << bfs() << endl;
return 0;
}
1100. 抓住那头牛
题目:
农夫有两种走的方式:位置+1或-1,位置*2,问抓住牛最少需要走几步
思路:
代码:
#include <bits/stdc++.h>
using namespace std;
const int N = 100010;
int n, k;
int q[N];
int dist[N];
int bfs()
{
memset(dist, -1, sizeof dist);
int hh = 0, tt = 0;
q[0] = n;
dist[n] = 0;
while(hh <= tt)
{
int t = q[hh ++];
if(t == k)return dist[k];
if(t + 1 < N && dist[t + 1] == -1)dist[t + 1] = dist[t] + 1, q[++ tt] = t + 1;
if(t - 1 >= 0 && dist[t - 1] == -1)dist[t - 1] = dist[t] + 1, q[++ tt] = t - 1;
if(2 * t < N && dist[2 * t] == -1)dist[2 * t] = dist[t] + 1, q[++ tt] = t * 2;
}
return -1;
}
int main()
{
cin >> n >> k;
cout << bfs();
return 0;
}
多源BFS
173. 矩阵距离
题目:
输出一个 N 行 M 列的整数矩阵 B,其中:
$B[i][j]=min_{1≤x≤N,1≤y≤M,A[x][y]=1}dist(A[i][j],A[x][y])$
思路:
代码:
#include <cstring>
#include <iostream>
#include <algorithm>
#define x first
#define y second
using namespace std;
typedef pair<int, int> PII;
const int N = 1010, M = N * N;
int n, m;
char g[N][N];
PII q[M];
int dist[N][N];
void bfs()
{
int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};
memset(dist, -1, sizeof dist);
int hh = 0, tt = -1;
for (int i = 1; i <= n; i ++ )
for (int j = 1; j <= m; j ++ )
if (g[i][j] == '1')
{
dist[i][j] = 0;
q[ ++ tt] = {i, j};
}
while (hh <= tt)
{
auto t = q[hh ++ ];
for (int i = 0; i < 4; i ++ )
{
int a = t.x + dx[i], b = t.y + dy[i];
if (a < 1 || a > n || b < 1 || b > m) continue;
if (dist[a][b] != -1) continue;
dist[a][b] = dist[t.x][t.y] + 1;
q[ ++ tt] = {a, b};
}
}
}
int main()
{
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i ++ ) scanf("%s", g[i] + 1);
bfs();
for (int i = 1; i <= n; i ++ )
{
for (int j = 1; j <= m; j ++ ) printf("%d ", dist[i][j]);
puts("");
}
return 0;
}
转载请注明来源,欢迎对文章中的引用来源进行考证,欢迎指出任何有错误或不够清晰的表达。可以在下面评论区评论,也可以邮件至 1149440709@qq.com